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SUMMARY 
We solve by a finite difference method a system of simultaneous non-linear partial differential equations 
which modelizes the transfer of heat and mass when a fluid evaporates from the hot wall and condenses on 
the cold wall of an upright rectangular cavity. The need to verify a certain condition associating the physical 
parameters of the fluid for the existence of steady state solutions is proved. 

KEY WORDS Heat and mass transfer Laminar flow Coupled boundary conditions Navier-Stokes equations 

1. INTRODUCTION 

In this paper we deal with the numerical solution of a model describing the steady state, laminar 
flow of an inhomogeneous fluid in a two-dimensional bounded domain. The model allows for 
simultaneous transfer of heat and mass when, in the presence of a large concentration of an inert 
and non-condensable gas, a fluid evaporates from a hot vertical wall and part of it condenses on 
a cold vertical wall of a rectangular cavity. 

The enclosure is between vertical liquid evaporating and condensing films. The temperatures 
and concentrations are uniform over the two gas-liquid interfaces. All the other sides are 
insulators to both energy and mass transfer. The fluid inside is a mixture of vapour and 
non-condensable gas. This model is useful in practical systems such as partial pressure distillation 
and solar desalination plants. 

From general conservation laws and behaviour laws for fluids’ we obtain the equations of the 
model (Figure 1):’ 

momentum 

av aw -1 Fp’ 
x-component z i  -+ w -=- -- [ a  o(T- To)+P*(G- Go11.4 +G*A2.’, 

dy Po 

aw aw - 1  apt - 
v 7 + w - = ~ - + 
ox ay P o  dy  

y-component Aw, 
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v - -I- w 7 = V O  A T, 

ax c y  

dG i3G 
C' -+ w -=D,,AG, ax ay  

do aw 
-+-=0, ax ay 

cell width (cm) 
cell height (cm) 
x-direction velocity component (cm s- ') 
y-direction velocity component (cm s- ') 
temperature ("C or K) 
average temperature of T I  and Tz 
mole fraction of phase-transferable component 
average mole fraction of GI and G2 
gravitational acceleration (cm s-') 
pressure (dyn cm - *) 
combined pressure, p - p o p  (dyn cm ~ 2, 
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P density (gm cmP3) 
a thermal coefficient of volumetric expansion ("C 
B volumetric expansion coefficient (dimensionless) 
P kinematic viscosity (cm2 s- ') 
V thermal diffusivity (cm2 sC' )  

DAB binary diffusion coefficient (cm2 s-'), 

or K - ') 

- 
- 

with subscripts 

0 evaluated at To 
1 
2 

gas-liquid interface on the condensing side 
gas-liquid interface on the evaporating side. 

The following implicit assumptions are made: (1) no chemical reaction; (2) hypothesis of 
Boussinesq; (3) no forced diffusion; (4) laminar and two-dimensional motion; (5) no thermal 
radiation. 

The temperature is maintained constant over the two gas-liquid interfaces. Thus there is no 
reason to take into consideration latent heat of evaporation or condensation at vertical walls. 

The boundary conditions are as follows: 

cold wall 

(? G 
f3Y 

v=o,  W =  -bl-, T= Ti, G = G I ,  

hot wall 

G = G2, 
f3G 

T=T2, dy' v = 0, w = - h  

insulator wall 

where bi (cm2 s- l )  is the mass transfer parameter at Ti (i= 1,2). 
The normal velocities at the interfaces are derived from mass flux balances. The tangential 

velocity at the evaporating interface is equal to zero. Since the condensation rate is a small 
percentage of the liquid feed rate, the tangential velocity at the condensing interface is set equal to 
zero. The slipping at insulated walls produced by the evaporation and condensation is modelized 
by w =  -b i?G/f3y, where h is a function defined on r3vr4 ,  with h=hl for y=O and h=b2 for 
y = e .  

If non-dimensional co-ordinates, velocities, pressure, temperature and concentration are de- 
fined by 

then the problem (W) to solve is as follows. 
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Find (u, p ,  8, C) satisfying the equations 
2 

-pAu+ u i d , u + V p =  - (y l  9+1/2C,0) in R, 

div(u)=O in 0, 
;= 1 I 2 

- v , A 9 -  c u,iii9=0 i n n ,  

-v2AC- c uidiC=O i n n  

i = l  
2 

( Y j  i =  1 

and the boundary conditions 
u l = O  and u 2 = - k & C  o n r ,  
9=C=-1 on r l ,  

9 = C = 1  o n r 2 ,  
2,9=2,C=O on r3wr4, 

where (Figure 2) 

R = ( ( X 1 , X 2 ) E [ W 2 ; O < X l < L , 0 < X 2 < 1 } ,  

r l = ( ( x l , o j  a2; o < ~ , < L ) ,  
r 2 = { ( x 1 ,  1) E R ~ ;  O < ~ , < L ) ,  

r 4 = ~ ( ~ , X 2 ) E ~ 2 ;  0 < ~ , < 1 ) .  

p = i o / h  7 = ~ , / h , ,  "2 =D,,lb, > 71 =ao.4e3(T2 - TO)/b?> 

; 7 2 = B o ~ e ~ ( G z - G o ) / b ? ,  k l =  G2 -Go,  k 2  = h ( G 2  - Go)/h1 

r3={(0, x2) ER'; O<x2< 1 ), 

and k is a function defined on r3 v r4, with k = k ,  for x2 = O  and k=  k 2  for x2 = 1. 
We use the following notations: 

2 

di2;=;iu/2xi, Vv=(ii, u,  d2u) ,  u = ( u l ,  u2j, Au=(Aul ,  Au2), div(u)= 1 diui. 
i =  1 

n 

X1 
d. 

Figure 2 
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For the analytical resolution we suppose that the function k defined on T 3 u r ,  is the 
restriction of a function k€C1(R) with k = k i  on r,(i= 1,2). In the numerical experiments we have 

Integrating div(u)=O over a, using Green’s formula and the boundary conditions u k  = O  on 
k(x1, x2) = k l  + (k2 - kl 1 x2. 

r3 u r4 and u2 = - k i d 2  C on F,, we prove that the concentration C must satisfy the relation 

k ,  joLd2C(x,,0)dxl=k2 J2C(x1, I)dxl jOL 
Integrating the equation for C over $2, using Green’s formula, the boundary conditions and the 

above relation, we have 

Thus the constants v 2 ,  k ,  and k 2  must satisfy the equality 

Let us assume that the preceding relation is satisfied. 
The boundary conditions connecting the velocity and gradient of concentration exclude 

straightforward application of variational methods. In Section 2 we recall that under the 
condition 

v > i.P + 2 J m ,  

where 

and p ( k ,  L, yl, y2), A(k, L, y l ,  y 2 )  and f ( k ,  L, yl, y 2 j  are positive constants depending on k, L, 
y l  and y 2 ,  problem (Pj has a unique s ~ l u t i o n . ~  This condition is satisfied if p, v 1  and v2 are quite 
large. 

In Section 3 we look for the solution using an iterative method. Thus we have to solve four 
linear problems at each step. 

In Section 4 we describe the formulation of a discrete approach to the four linear problems 
above. This formulation is compatible with the iterative method. 

In Section 5 we give the numerical results for three representative cases. 

Case 1 .  The sufficient existence and uniqueness condition is satisfied and the numerical scheme 

Case 2. The sufficient existence and uniqueness condition is not satisfied, but it is ‘close’, and 

Case 3. The sufficient existence and uniqueness condition is largely not satisfied and no 

converges very quickly. 

the numerical scheme converges more slowly. 

numerical solution of (9) is found. 

The numerical simulations obtained with the help of finite differences provide convincing 
evidence that a certain condition is necessary for the existence of a solution of (9). 
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2. AN EXISTENCE AND UNIQUENESS THEOREM 

To obtain homogeneous conditions in 9, C and u on r, we set r(xl, x2)=2x2-1, s(x1,x2)= 
-4x:+6x:-1 and, for e such that v = O  on r l u r 2 ,  d l u = O  on r3ur4 and 
kl J6 dzu(xl ,!) dxl = k2 I 16 dzu(xl, 1) dx,, w =(O, - k(d, c"+ 8,s)). In problem (9') we perform the 
substitution 9= 9- Y, C = C - s, U = u - p(w) and p = p + p4, where B(w) and 4 are the solution of 
the Stokes equations4 

-A(fl(w))+Vq=O in Q, 

div(P(w))=O in Q, 

p(w)=w on r 
Simple calculations lead us to the following problem: 

2 

-PA"+ C ( U + D ( W ) ) ~ ~ ~ ( U + ~ ( W ) ) + V ~ ' =  - (y , (9"+r)+y2(C"+s) ,  0) in Q, (1) 
i =  1 

div(U)=O inQ (2)  
2 

- v ~ A ~ " +  C ( i i + p ( ~ ) ) ~ d ~ ( S " + r ) = ~  i n n ,  

-v2Ai?+ C ( i i+p (~) )~&(c"+s )=v~As  i n n ,  

d ,g=O and i.lC=O o n r 3 u r 4 ,  

i =  1 

2 

i = l  
w 

9"=c"=0 o n r l u r 2 ,  

U=O o n r .  

(3) 

We introduce the following spaces: 

V= (u~(Hh(C2))~; div(u)=O in Q}, 

Z={uEH2(R);u=Oon r lurZ, ( ? , ~ = O o n r , ~ r , } ,  

x= vx z x 20. 

Let .d = ( .dl,  d2,  d3)  and 9 = (F,, F2, 9,) be operators defined on X as follows: d l  is the 
isomorphism of V onto V *  defined by the V-elliptic continuous form 

2 f  

d2 and d3 are the isomorphisms of Z onto L2(R), 

d2$= -v1A9" VJEZ, - 
d 3 C =  -v,A?+div(aVc) VC"EZ; 



EXISTENCE CONDITION IN HEAT AND MASS TRANSFER 93 

and V(ii, 3, C")EX, 
Z 

91(U, 3, c")= - c (U+8(w))iai(u+B(w))-(yl(S"+r)+yz(C+S), O), 

F 2 ( U ,  5, E ) =  - 1 (i i+p(W))iai(i i+r),  

i =  1 

2 

i =  1 

L 

F 3 ( U ,  3, c")= - 1 (U+/3(w))iai(c"+s)+v2As+div(oV~). 
i =  1 

Here o(xl, x2)= k l  -(kl + k z ) x z .  

Remark 1 

In Reference 3 it is proved that solving (1H7) is equivalent to solving in X the equation 

.d(U, 8 c")=.F(U, $ c"). (8) 

To find the solutions of ~ U = F U  as fixed points of the operator d-loF, it is necessary that 
range (9) 5 range(.d). Therefore we must add div(aVC") to both sides of (4), where o is a suitable 
function. Thus the initial problem is reduced to finding fixed points of the operator . d - l ~ F  
on X .  

Theorem 1 

If the inequality Y >  1.p +2,/(pI/F(O) 11 y )  is satisfied, where 

+ 
and p ( k ,  L, yl, y z )  and A(k, L, y l ,  y 2 )  are positive constants depending on k, L, y I  and y 2 ,  then 
there exists R>O such that in the ball of centre 0 and radius R the operator T = d - l o F  has 
a unique fixed point. 

Remark 2 

The preceding condition is satisfied if p, v1  and v 2  are quite large. The calculation of the 
constants p ( k ,  L, y I ,  y z )  and I ( k ,  L, "J, y z )  is very long and is given in Reference 3. For practical 
purposes we substitute 11 F(0) I I y  by an upper bound f computed in Reference 3. Therefore our 
actual condition for convergence, 

is more restrictive. 
v > I P  + 2 J m ,  (9) 

3. ITERATIVE METHOD 

The solution of (8) is sought using an iterative method. 
Letting (ii", @',  EX, we find (Urn", $"+', C""+')EX such that 

d(ij"+l, $"+I. C"l")=.F(ii", g", E m ) .  

The limit (U, $ C)EX of this sequence (U", @"" Ern)  is the solution of equation (8). 
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To find the solution of (10) given the definition of d and 9, the following four linear problems 
must be solved. 

Problem (Pl) 

Find (p(wm), qm)E(H'(R))2 x Lz(R)/R such that 

-A(j?(w"))+Vq"=O in R, 

div(P(wm))=0 in R, 

on r, 
where drn is the trace of ~ ~ = ( O , - k ( d ~ C " ~ + d ~ s ) )  on r. 

Problem (P2)  

Find ( u m + 1 , p ~ m + 1 ) ~ V ~ L 2 ( R ) / ~  such that 

- ~ A V +  1 + vp.m+ = - C ( i m +  B ( ~ m ) ) ~ a ~ ( u m + B ( w m ) ) - ( y ~ ( g ~ + r )  + y 2 ( E m  + s), 0) in Q, 
2 

i =  1 

div(um+')=O in R, 

U m + l = O  o n r .  

Problem (P3 )  

Find g m + l ~ H 2 ( S Z )  such that 
2 

- v l A g m + ' =  - C ( U m + f l ( w m ) ) i d i ( ~ m + r )  inR,  
i = l  

j j m + l -  d l  gm + = o on r3 u r4, -0 o n r , u r 2 .  

Problem (P4) 
Find C"m+1~H2(R)  such that 

2 

- v ~ A C " ~ + '  +div(oVC"+') = - C (U" + j?(~"))~d~(C"" + s)+ v2As+ div(oVem) inn ,  
i =  1 

Remark 3 

E m  + satisfies 
The 'special move' used in the construction of operators d and 9 (see Remark 1) implies that 

kl  [ ~ a 2 ~ m + 1 ( x l , 0 ) d x l = k 2  a2C"m+1(x1, l )dxl .  

Therefore (urn+ l ,  3m+1, Em+ ')EX; the iterative method is therefore well-posed, since range 
(9) c range (d). 

1: 
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4. THE DISCRETE PROBLEM 

In this section we describe a discrete approach for each of the four linear problems given in the 
last section. 

4.1. Problems (PI) and (,YPz) 

These problems are particular cases of the Stokes equations: 

- AU + Vp= f in a, 
div(u) = 0 in 0, 

u=(O, b)  on I-, 

wheref and h are known and b satisfies 

b ( x l .  0) dxl = b(xl, l)dxl s:' 
(in (:U,).f'=O, in (P2 )  b=0). 

To solve (11)<13), we use a discrete Galerkin approach in finite differences based on scheme I1 
given in Reference 5. For simplicity we assume that C l  is the unit square and we consider meshes 
with uniform spacing. 

On the unit square we define the meshes (Figure 3) 

Q={(ih, jh)I i=l ,2 , .  . . , N - l ; j = l , 2 , .  . . , N - l } ,  

rh={( ih , jh) l i=l ,  2, .  . . , N -  l , j = O ; j =  1,2, . . . , N -  1, i = O } ,  

r :Rh=( ( ih , ,~h ) I i=1 ,2 , . .  . ,  N w h e n j = O a n d j = N ; j = 1 , 2 , . .  . , N  wheni=Oandi=N},  

6 h h = a h  " r,,. 
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On these meshes we define mesh vectors U" and mesh scalars 4". We also need to introduce the 
spaces 

v , = ( u h = ( U ! ,  Ui) defined On !&Udnh}, 

V f = { U h r z V h I d = O  on d f & } e { U  defined on oh], 
w,= {4h scalar defined on 6,). 

Finally, let 9, and 9, denote discrete finite difference operators approximating V and div 
respectively. These operators 9,: v, + wh and gh: w, -+ V," are defined respectively as 

( ~ h u h ) i , j = ( l / h ) [ ( U l i +  ~ , j - ~ l , , , ) +  { U Z i , j +  L -U2i , j}1,  

where uh=(ulruz)EVh;,, and 

((gh4h)i, j =  ( l  lfi) ( ( d i ,  j- 4 i -  1 ,  j), ( 4 i .  j- 4 i .  j- 1)). 

On V," and w, we consider the standard 1 inner products 

Then it  can be directly proved that 3, and gh verify 

( g h U h ,  4 h ) W , = ( U h , - % h 4 h ) y ;  v U h E  vf and V 4 h E  w,,. (14) 

Condition (14) implies that gh and - 9 h  are adjoint and thus6 we have the following 
decomposition of V t .  

Theorem 2 

V i  = D, 0 G,, where 

D,=(uhE v," I g , U h = O } ,  

G h = ( U h €  vi I3@€ WJ, such that U h = % , @ } > .  

For this scheme we have dim Dh = ( N  - 2)' and a basis for D, is given by 

(0, l), i = l ,  j=rn+l, 
( - l ,O) ,  i = l + l ,  j = m ,  
( 1 ,  -1), i = l + l ,  j = m + l .  

(O,O), all other i,j, 

m = l , 2 , .  . . , N - 2 .  

@ , f , ; i P , m +  112 = 

I =  1,2, . . . , N - 2 ,  

Let the operator CN,: v h  -+ V ;  be defined as 

( N h u h ) i ,  j= ( -  l / h 2 )  ((8: Uh)i ,  j+ (d;uh)i, j), 
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where 

uh=(O, bh)  on df&, (17) 

where f h  and bh are appropriate discretizations of the data f and b respectively. 
The decomposition of V," leads directly to a discrete Galerkin approximation. Indeed, let 

(@,, m2,  . . . , @,I, with m = ( N -  I)', be a basis for Dh and let ah€ vh satisfy ahah=()  on i i h  with 
ah=(O, bh) on d o h .  Then the discrete Galerkin approximation aiai is defined as the 
solution of 

(hrh(wb+ah), @ i ) V ; = ( f h , @ i ) V ~ t  i = l ,  2, . . . , m. (1 8) 

System (18) represents m (scalar) equations for the m (scalar) coefficients cli and is equivalent to 
the finite difference system (15)-(17) in the following sense. 

Theorem 3 

there exists a p h e w h  such that wh+ah and ph satisfy (15H17). 
If uh and p h  satisfy (1 5)-q 7), then wh = uh -ah satisfies (1 8). Conversely, if wh satisfies (1 8), then 

To solve equation (18), one must construct the mesh vector ah. We have the following. 

Lemmu 1 

2 h a h = ~  in Ti,, and ah=(O, b h )  on i?Rh is 
A necessary and sufficient condition for the existence of the mesh vector ah€ vh satisfying 

i = O  i = l  

This condition arises from the summation of ghah=O over all nodes of fib. 
4.2. Problem ( P 3 )  

In this problem we find 9" satisfying - 
-AQ=g i n R ,  

a, 9'=0 on r3ur4, 9"=0 o n r , u r , .  

We approach this elliptic linear problem using a convergent standard r n e t h ~ d . ~  Thus we have 
the following finite approximation: 

(- 1 /h ' ) ( (S:  9"h)i, j + ( S l  g h ) i ,  j ) = g i ,  j ,  1 < i , , j< N - 1, - - 
Q,,,=O and 9,,,=0, O<i<N, - - 
& j = 8 1 , j  and 8 N , j = & - l , j ,  1 < j<  N -  1, 
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4.3. Problem (a,) 
Using the unknown C= c"+ s, we write this elliptical linear problem as 

div(( - v 2  + o)VC"+' ) = - d' iv(Cm(um+b(Cm))-aVCm) in Q, 

Cm+'= - 1  on rl, cmf'=l on r2, &cm+l=0 on r3Ur4. 
To recover the discrete compatibility condition (19) with hh= - (kd2Cm+ ' ) b  (Corollary l), the 

following discrete approach must be used: 

( . g h (  (- v 2  + ah) (Vh C m  + 3 h ) ) ) l , J  = - ( 2fh(Cm' '(urn, + / 3 ( ~ ~ , ~ ) )  ~ ahvh cm. h ) ) , , J ,  0 6 i, j 6 N - I, (20) 

(Cm+l )L ,O= - 1 and ( C m + l ) i , N =  1, O<i<N-1, (21) 

( V ~ C m + ' ~ h ) O , J = O  and (V:C"+'.''),,,=O, O < j < N - l ,  (22) 

Figure 4 
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where 

Proposition I 

The solution Cm+lvh  of (20)422) satisfies 
N -  1 TV-1 

k ,  C (Vi  C m + l , h ) z , O = k z  C (Vh,Cm+l,h)l,N. (23 )  
,=O 1=0 

Proof. By summation of equations (20) for 0 < i. j < A - 1 and the boundary conditions on we 
have 

TV-1 A -  1 

( v 2 - k , )  (v; C m + q l , O = ( V * + k z )  1 (vlCm+l,h)l ,y.  
1=0 l = n  

Thus 
N -  1 N-1 A -  1 

k ,  c (Vh, cm " q h ) 1 , 0 - k 2  c ( v h , C m + ~ ~ h ) l , N = [ k t - k 2 ( V 2 - k l ) / ( V Z + k l ) ]  C (Vh,Cm+l,h)L.O=O. 
1=0 1=0 1 = n  

Corollarj I 

satisfies condition (19) with hh= -(khV;Cm+l,h). 
If we make (kVtCm+'3h)0,1 -kl(Vh,Cm+i*h)O,O, then the solution C m + l , '  of system (20)422) 

Figure 5 
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Then we can use the discrete Galerkin approach (18) for solving problems ( P 1 )  and (P2) and 
the iterative method is well-posed. 

5. NUMERICAL RESULTS 

From the numerical experiments performed we have selected three representative cases of the 
different behaviours observed. 

In all cases we have considered k(xl, x2)=kl +(kZ - kl)xZ, L =  1 and the steps in both 
directions xi and x2 equal to 1/40. For smaller steps the results are identical-the results are not 
subject to reduction of step-while for bigger steps details of the behaviour of the solution are 
progressively lost. 

Table I 

m 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

0-2381003 x 10 
0.7577428 x 10- ' 
0.8425583 x 10 
0.4198000 x 10 - 4  

03371395 x 10- 
01872095 x 
0.1272534 x lo-' 
0.9498784 x 
07382492 x lo-'' 
0.5191394~ lo-' ' 
0.4092533 x lo-'' 
0.3021557 x 
0.2288871 x 
0-1772135 x 

0.3916987 x 10 
0.9251665 x lo-'  
0.9197070 x 
04506750 x 
03597724 x lo-' 
01305585 x 
0.1066720 x 10- 
0.7291265 x 
0.6080274 x lo-'' 
0.4255035 x lo-" 
0.3143575 x 
0.2640049 x 
0.3713898 x 
0.1538949 x lo-'' 

Table I1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

0.1278433 x 10 
0.7299503 
0.3349531 x lo- '  
0.3473205 x lo-'  
01962569 x lo-' 
0.5312811 x lo-' 
0.2086147 x lo-' 
01549681 x 
08868324 x 
04137669 x 
0.2499810 x 
0.1307526 x 
0.7945335 x 
0.4172027 x 

01309131 x 10 
0.1 500075 x 10 
0.1284974 
0.4671985 x lo-' 
0.2117689 x lo-'  
0.4574173 x lo-' 
0.1505493 x 
01125943 x lo-' 
0-6939957 x 
0.2740873 x 
0.1750300 x 
0.1024339 x 
0.5245996 x 
03304745 x 
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For the benefit of the reader we show the field directions and modulus of velocity for different 
values of m (number of iterations) in order to underline the convergence of the iterative process. 
Finally, we show tables with the relative differences between the velocity components and the 
sequential iterations. 

5.1. First case 

k, = 0.239 86, k2=0.240 1 1  (~2=460.74227), ~ = 4 1 5 ,  V ,  ~ 4 4 0 ,  yl=Y2=0'5. 

Thus we have 

i,=35.982363, v=415, p =  180.12656, f=365.11602. 

Condition (9) is satisfied and the numerical scheme converges rapidly to the solution, as can be 
seen in Table I. The field of velocity directions of the solution corresponding to iteration 15 is 
shown in Figure 4 and the modulus of these velocities is shown in Figure 5 .  The same figures are 

r: 

r4 

Figure 6 
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obtained when we draw the field of velocity directions and the modulus of these velocities 
corresponding to iteration 5. 

5.2. Second case 

k ,  =0*4593, kZ=O4609 (~z=264.61421), p=249, ~ 1 ~ 2 6 2 ,  ~ 1 = ~ 2 = 0 . 5 .  

Thus we have 

1 = 87.785 570, v = 248.501 83, p = 478.527 27, f = 1 172.53 1 48. 

Condition (9) is not satisfied, but it is ‘close’, and the numerical scheme converges. 
Of course, we obtain numerical solutions since the theoretical condition of convergence is less 

restrictive than (9). From Table I1 we deduce that a slower convergence is obtained. 
The field of velocity directions of the solution corresponding to iteration 15 is shown in 

Figure 6. If the field of velocity directions corresponding to iteration 5 is drawn, the figure 
obtained is slightly different from Figure 6. 

Figure 7 



EXISTENCE CONDITION IN HEAT AND MASS TRANSFER 

5.3. Third case 

kl=0.95, k 2 = 1  (~2=38),  p=40, ~ , = 4 0 ,  :;1=;12=1. 

Thus we have 

i. = 290.300 88, v = 34.483 077, p = 17446245, .f= 5046.048. 
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Condition (9) is largely not satisfied and the iterative process does not converge. 

this case there is a greater number of vortices that are larger at iteration 3. 
Figures 7 and 8 represent the fields of velocity directions for itcrations 2 and 3 respectively. In 

At iteration 4, overflow is obtained. 
From these results we conclude that a constraint is needed on the physical parameters of the 

problem in order to achieve the existence of a solution of the steady state problem (P). 
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